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Thermoelastic Signatures of Tissue Phantom
Absorption and Thermal Expansion

JENN-LUNG SU anp JAMES C. LIN

Abstract—A microwave-induced thermoelastic pressure wave method
for imaging of biological tissues has been investigated. Liquid-filled
test tubes inside a water tank were used as phantom models. A pulsed
2.45 GHz microwave source and a hydrophone transducer were used
to generate and to detect thermoelastic pressure waves, A pattern ex-
traction algorithm was used to analyze the wave contours. Preliminary
results show that the thermoelastic waveform is proportional to the size
of the test tube and depends on the type of solution within the test tube.
Two test objects can be detected with a spatial resolution better than
1 em. These results suggest that a microwave-induced thermoelastic
pressure wave system may provide valuable information for imaging
tissue absorption and thermal expansion properties.

I. INTRODUCTION

Current medical imaging systems rely on a number of basic
physical principles and measurement technigues. Examples in-
clude: 1) the measurement of the transmission intensity of X-ray
through the body, 2) the measurement of the reflection intensity of
ultrasonic wave propagation inside the body, and 3) the measure-
ment of gamma rays emitted by selectively deposited radioactive
chemicals in the body [1]. In addition, new imaging schemes such
as positron emission tomography and nuclear magnetic resonance
have significantly improved the diagnostic capabilities [2]. Micro-
waves have also been suggested as a potential imaging modality,
Microwave imaging involves low levels of nonionizing radiation
and could be used, cost effectively, on a long-term basis with min-
imal health hazard to the patient [3]. Moreover, microwave pulse-
induced acoustic signals have been studied by many investigators
in the last decade [4]-[7]. It is generally accepted that microwave-
induced acoustic signals stem from the rapid rise in temperature
and the subsequent thermal expansion of tissue which absorbed the
incident microwave pulse [7]. Several reports have suggested the
use of microwave-induced acoustic waves as an imaging modality
for biological tissue. Olsen [8] and Lin and Chan [9] reported im-
aging of tissue phantoms using a hydrophone array to detect the
acoustic pulse. Both of these systems measure the attenuation of
the acoustic wave as it propagates through the tissue. Caspers and
Conway [10] measured the distribution of absorbed microwave en-
ergy in lossy inhomogeneous materials by using radiation from
open-ended. semi-rigid coaxial cables (point source) immersed in
a water bath.

The purpose of this study is to further investigate the use of
microwave-induced thermoelastic pressure waves as an imaging
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